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Estimation of IRT Graded Response Models:
Limited Versus Full Information Methods
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The performance of parameter estimates and standard errors in estimating F. Samejima’s
graded response model was examined across 324 conditions. Full information maximum
likelihood (FIML) was compared with a 3-stage estimator for categorical item factor analysis
(CIFA) when the unweighted least squares method was used in CIFA’s third stage. CIFA is
much faster in estimating multidimensional models, particularly with correlated dimensions.
Overall, CIFA yields slightly more accurate parameter estimates, and FIML yields slightly
more accurate standard errors. Yet, across most conditions, differences between methods are
negligible. FIML is the best election in small sample sizes (200 observations). CIFA is the
best election in larger samples (on computational grounds). Both methods failed in a number
of conditions, most of which involved 200 observations, few indicators per dimension, highly
skewed items, or low factor loadings. These conditions are to be avoided in applications.
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The use of rating scales for measuring psychological
constructs is an integral part of behavioral sciences mea-
surement, particularly in assessing personality and attitudi-
nal constructs. Increasingly, applied researchers use more
sophisticated techniques for modeling rating scales, such as
item response theory (IRT) models, instead of more classi-
cal procedures, such as factor analysis. The factor analysis
model and IRT models are members of the broader class of
latent trait models (Bartholomew & Knott, 1999). The fac-
tor analysis model is a linear model originally proposed for
continuous data. In contrast, IRT models are nonlinear
latent trait models for categorical data. Thus, in principle,
IRT models are better suited than factor analysis for mod-
eling the categorical ordered data arising from the applica-
tion of rating scales (Bartholomew & Knott, 1999; Maydeu-
Olivares, 2005b; McDonald, 1999).
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There are many IRT models that can be applied to rating
data (for an overview of models, see van der Linden and
Hambleton, 1997). Possibly, the most widely used IRT
model for rating data is Samejima’s (1969) graded response
model (GRM). Also, there are several estimation procedures
that can be used to estimate IRT models. A thorough de-
scription of IRT estimation methods is given in Baker and
Kim (2004; see also Bolt, 2005). The current standard
estimation method in IRT is full information maximum
likelihood (FIML) via the expectation-maximization (EM)
algorithm (Bock & Aitkin, 1981; Bock, Gibbons, & Muraki,
1988). It is termed full information because all the informa-
tion contained in the response patterns is used to estimate
the model parameters. FIML is asymptotically efficient, in
the sense that in infinite samples, no other estimator yields
parameter estimates with smaller variances. Yet, FIML es-
timation may be computationally demanding, and, as a
result of the computational requirements involved, issues
such as goodness of fit and standard errors have been off the
IRT agenda until recent times.

IRT estimation methods such as FIML were developed to
model data arising from educational applications (see Lord,
1952; Lord & Novick, 1968). In typical educational appli-
cations large sample sizes are often available, tests consist
of a large number of indicators, and interest lies in modeling
unidimensional constructs. However, in applications of rat-
ing scales we often encounter situations that are far from
those typically encountered in educational settings. First,
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multidimensional constructs are more often of interest. Sec-
ond, there is significant demand from practitioners for short
assessment tools that gather the maximum amount of infor-
mation in the minimum possible time. These very short
questionnaires are, for instance, frequently encountered in
behavioral research within medical settings. To complete
the picture, we increasingly find applications that focus on
very specific populations; as a result, only small samples are
available for analysis. How suitable is FIML in these situ-
ations? The optimal properties of FIML are asymptotic and
need not hold in finite samples. Yet, it is precisely the finite
sample behavior of the estimator that is of interest in appli-
cations. Also, what are the limits of the “good” behavior of
FIML? Is FIML the best option for multidimensional mod-
els, small numbers of items, and small sample sizes?

An alternative perspective for the estimation of latent trait
models with ordinal indicators arose from within the factor
analysis tradition. More specifically, when the observed
responses are assumed to arise from a standard factor anal-
ysis model whose responses are categorized according to a
set of thresholds, a model formally equivalent to a variant of
Samejima’s (1969) graded response IRT model is obtained
(Takane & de Leeuw, 1987). This variant of Samejima’s
model is also known as the normal ogive model (McDonald,
1997). Within a factor analysis tradition, estimation of this
model proceeds differently. For brevity, we will refer to these
estimation procedures as categorical item factor analysis
(CIFA). In CIFA, parameters are generally estimated in several
stages through the use of polychoric correlations. Also, only
univariate and bivariate information is used for parameter
estimation. Accordingly, CIFA methods estimated in
stages have been called limited information methods.

Both FIML and CIFA estimation procedures yield param-
eter estimates with good statistical properties. Their esti-
mates are consistent and are asymptotically normally dis-
tributed. However, from a statistical viewpoint FIML
estimation is preferable in principle to CIFA estimation, as
the former yields parameter estimates with smaller variance.
This result is, however, asymptotic and need not hold in
finite samples. On the other hand, CIFA estimators have
some clear advantages over FIML estimation:

1. They are computationally much faster than FIML.

2. Models with many latent traits and correlated la-
tent traits pose no particular computational diffi-
culty to CIFA, in contrast to FIML.

3. As CIFA belongs to the broad family of structural
equation models (SEM), very complex models in-
volving exogenous variables and categorical, con-
tinuous, and censored dependent variables can be
estimated with ease within a comprehensive mea-
surement model (Muthén, 1983, 1984).!

Some simulation studies have addressed the performance
of FIML in estimating IRT models in finite samples (e.g.,
Boulet, 1996; Finger, 2001; Gosz & Walker, 2002; Knol &
Berger, 1991; Reise & Yu, 1990; Reiser & VanderBerg,
1994; Stone, 1992; Tate, 2003; Tuerlinckx & De Boeck,
2001). However, due to the computational burden of FIML,
only a few of these studies involved more than 100 repli-
cations per condition. More important, taken together they
covered only a small subset of the situations of interest in
applications. For instance, the behavior of FIML parameter
estimates in multidimensional models for rating data has
never been investigated with at least 100 replications per
condition. Additional research is needed on the behavior of
FIML standard errors. Due to the computational ease of
CIFA, more simulation studies have assessed the perfor-
mance of CIFA methods (e.g., DiStefano, 2002; Dolan,
1994; Flora & Curran, 2004; Kaplan, 1991; Muthén &
Kaplan, 1985, 1992; Oranje, 2003; Parry & McArdle, 1991;
Potthast, 1993; Rigdon & Ferguson, 1991), and, as a result,
we have a more comprehensive view of the empirical be-
havior of CIFA estimation methods. Furthermore, even
though several studies have pitted FIML against CIFA
estimation methods (Boulet, 1996; Finger, 2001; Gosz &
Walker, 2002; Knol & Berger, 1991; Reiser & VanderBerg,
1994; Stone, 1992; Tate, 2003), in each case only a few
conditions were considered, the number of replications was
clearly insufficient, or some aspects (e.g., the comparison of
standard errors) were not investigated. Taken together, these
studies provide us with a fragmentary view of the empirical
performance of FIML versus CIFA.

To fill this gap, we performed an extensive simulation
study that compared the empirical performance of these
methods in a wide range of settings. We experimentally
manipulated different conditions of sample size, number of
items, number of response categories, number of latent
traits, item discrimination, and item skewness to create a
full array of possible conditions that may be found in
empirical applications of IRT methods. For each condition,
we investigated the performance of FIML and CIFA param-
eter estimates as well as the performance of their standard
errors. In so doing, we aimed to provide guidelines for
applied researchers on the boundaries of good performance
of IRT estimation methods for rating data and recommen-
dations on the most advisable method of estimation under
each research setting investigated.

The remainder of this article is organized as follows. In
the next section, we describe Samejima’s GRM, the IRT

! Recently, some commercial software, such as GLLAMM
(Rabe-Hesketh, Pickles, & Skrondal, 2001) or Mplus versions
from 4.1 onward (Muthén & Muthén, 2006), has implemented the
possibility of estimating IRT models with exogenous variables by
FIML.
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model employed in our study. Next, we describe how FIML
and CIFA methods proceed in estimating this IRT model.
We follow by reviewing the results of previous studies that
investigated the performance of these estimation methods.
Then, we describe the simulation study performed and re-
port its results. The article concludes with a summary re-
port, a set of guidelines for applied researchers, and a
discussion of further research topics.

The Normal GRM

IRT models are a family of latent variable models for cate-
gorical indicators. Consider modeling the responses to the n
items of a questionnaire. Each of the items is to be rated using
one of m response alternatives. Thus, for ease of exposition we
assume that the number of response alternatives is the same for
all items. Items will be labeled as y,, i = 1, ..., n. Response
categories will be labeled k = 0, ..., m — 1.

IRT models are intended to provide the probability of
each of the m" possible response patterns that may be
observed. In IRT models, this probability depends on (a) the
conditional probability of endorsing a response category,
given the latent traits, and (b) the distribution of the latent
traits (see the Appendix for further details). Often, the latent
traits are assumed to be normally distributed, and this as-
sumption will be used in this paper.

The IRT model that is most familiar to applied research-
ers is likely the two-parameter logistic model (2PL; Birn-
baum, 1968). In this model, the conditional probability of
endorsing an item is

1
1 + exp[—a(n — b)I

Pr(y; = lim) = ()
where Pr(y; = Olm) = 1 — Pr(y; = lIn). In this equation,
a; is the discrimination parameter, b; is the item difficulty,
and m denotes the latent trait. In the IRT literature, 6 is used
instead of m to denote the latent trait. Here, we use m for
consistency with the notation used in the SEM literature.
This model can be written in terms of the logistic distribu-
tion function W(®) as

Pr(y; = 1Im) = W(=a(n — b,)). (2)

Although the Lord and Novick (1968) parameterization used
in Equation 1 is most popular in IRT applications, it cannot be
extended to models that depend on more than one latent trait.
For multidimensional models (i.e., models with p > 1 latent
traits), the parameterization that is most widely used is

Pr(y; = 1lm) = ¥(o; + Bm), (3)

where «; is the intercept parameter and (3; is the slope
parameter. This parameterization readily extends to multi-
dimensional models, such as

Pr(y; = 1) = W(a; + Bm), )

where ; and m are now p X 1 vectors. The relationship
between Lord and Novick’s parameterization and the inter-
cept/slope parameterization used in Equation 3 is given by

o; = ab;

B = a; (5)

The 2PL is suitable for modeling rating items with two
response alternatives. Arguably, the most widespread model
for rating data is Samejima’s (1969) GRM.?> The GRM is
obtained using

Pr(y; = kim)

1= Ve + B
=W@ﬁﬁ@—?@wﬁﬁh)ﬁo<h<m—L

\I’(Oli,kﬂ + B,"ﬂ)

if k=0

if k=m—1
(6)

When the number of response alternatives is two, this model
reduces to the 2PL.

A normal distribution function ®(®) may be used instead
of the logistic distribution function W(®) in Samejima’s
model. When a logistic function is used, the model is called
logistic GRM, and when a normal function is used, it is
called normal ogive GRM. In the special case where the
items are dichotomous, it is referred to as the normal ogive
model instead of the 2PL.

CIFA Formulation of the Normal Ogive GRM

The normal ogive GRM can be alternatively derived from
a factor analytic framework. Within this framework, it is
assumed that a latent response variable y; underlies each
observed categorical response variable y,. The latent re-
sponses y; are related to the latent traits v via a standard
factor analytic model,

Y =Bm+e, )

where B,’ is a 1 X p vector of factor loadings and €; is a

measurement error. The latent traits and measurement errors
are assumed to be normally distributed, so that the latent
response variables are normally distributed.

In turn, the latent response variables are related to the
observed categorical responses via a threshold relation,

2 There is also some evidence suggesting that it may be the best
fitting parametric IRT model for rating data (Maydeu-Olivares,
2005a).
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vi=k if oy <yi <t 3

where o,y = —% and «;,,_; = +%. That is, under this
model, a respondent chooses a response alternative based on
her location on the response variable y; relative to a set of
m — 1 item threshold parameters, o; ;. Response alternative
k will be endorsed when the respondent’s latent response
value y; lies between thresholds «,; and o ;.

Thus, the ordinal factor analysis model defined by Equa-
tions 7 and 8 is simply a standard factor analysis model to
which a threshold process has been added to take into
account the ordinal nature of the observed data. However,
unlike in the factor analysis model for continuous responses,
in the ordinal factor analysis model the variances of the
measurement errors € are not identified. These variances can
be identified using one of two types of constraints and will
result in two equivalent parameterizations of the model. See
the Appendix for further details.

One way to identify the model is by setting the vari-
ances of € to 1 or to some other constant. If they are fixed
to 1, the parameters being estimated are the a;, and f3;
parameters of the normal ogive version of the GRM given
in Equation 6. Another way is to constrain the variances
of € to be equal to 1 — B/¥,, where W denotes the p X
p matrix of correlations among the latent traits. In this
case, the latent responses y; are standardized (their vari-
ance is 1) and the parameters being estimated are the
standardized thresholds 7;; and the standardized factor
loadings A;. The relationship between the standardized
and unstandardized parameters is

Tk B

T = m A= m ©)

Notice that the o, and [3; parameters receive two names. In
IRT terminology they are referred to as intercepts and slopes.
In SEM terminology they are unstandardized thresholds and
unstandardized factor loadings. We use both terms inter-
changeably here, and we use the same notation in Equations 7
and 8 to emphasize that they are the same parameters (when
the normal ogive version of the GRM model is used).

In summary, Samejima’s graded model has two variants that
depend on which link function (logistic and normal ogive) is
used to relate the parameters to the conditional probability of
observing a response category. In the special case of dichoto-
mous items, the logistic form of the model reduces to the 2PL,
whereas the normal ogive form reduces to the normal ogive
model. Regardless of the number of response alternatives
and link function, three parameterizations can be used. The
first one, a; and b, is the most widely used for unidimen-
sional IRT models. However, it cannot be used for multi-
dimensional models. For this reason, it will not be consid-
ered here. The second parameterization, 7;, and A,, is the

one used in SEM programs for CIFA. We will refer to this
choice as standardized parameterization, because it results
in factor loadings that are bounded between —1 and 1. The
third parameterization, o, and B,, will be referred to as
unstandardized parameterization. In this case, the 3, param-
eters are unbounded. Note that in the IRT literature the {o,
B;} parameterization is often called intercept/slope parameter-
ization and the {7, N;} parameterization is called threshold/
factor loading parameterization.

IRT Estimation Methods

FIML via the EM Algorithm

Possibly, the most widespread full information estimation
method in IRT modeling is marginal maximum likelihood
via the EM algorithm (Bock & Aitkin, 1981; Bock et al.,
1988).% In this method, the probability of each observed
pattern of responses is estimated at each iteration of the
estimation process, and each of these pattern probabilities
involves an integral in p dimensions (the number of latent
traits). The integrals do not yield close-form expressions,
and, as a result, they must be approximated numerically,
usually by means of Gauss—Hermite quadrature (Davis &
Rabinovitz, 1975, ch. 2). In this procedure, Q points are
defined along each dimension, which produces a grid with
QF points in the p-dimensional latent trait space. Then the
integral is approximated by a weighted sum of the function
evaluated at each point of this grid. As a result, computa-
tional requirements increase exponentially with the number
of latent trait dimensions.

Maximum likelihood estimates of model parameters are
obtained iteratively by means of the EM algorithm (Dempster,
Laird, & Rubin, 1977) in two steps. During the E step, a
provisional set of item parameters is regarded as the true item
parameters, and the proportion of examinees choosing a certain
category is estimated given these parameters and the response
patterns. In the M step, the proportion of responses obtained in
the E step is regarded as the true probability, and item param-
eters are estimated. These resulting item parameters are re-
garded as true parameters in the next E step. This process is
repeated until a certain convergence criterion is reached.

FIML requires heavy computations, particularly in mul-
tidimensional models and especially if the latent traits are
correlated. Also, the behavior of FIML depends on how the
numerical integration is performed to obtain the probability
of the response patterns. The more quadrature points per
dimension the better, but the exponential rate of growth of
the total number of points makes estimation unfeasible if
there are more than a few latent traits. To reduce the amount

3 What we refer to as FIML is often denoted as marginal
maximum likelihood (MML) in the IRT literature. Some authors
may refer to it as ML.
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of computation in multidimensional IRT models, one uses
only a few points per dimension. However, this strategy has
the drawback of producing inaccurate parameter estimates,
especially in long questionnaires (Meng & Schilling, 1996;
Schilling & Bock, 2005). Estimation of the standard errors,
which requires the inversion of the matrix of second deriv-
atives at the end of the last M step, adds additional compu-
tational burden.

CIFA Estimation

CIFA procedures are specifically designed for the normal
ogive form of the GRM. They use only low-order associa-
tions among the observed variables, and they are performed
in several stages for improved computational efficiency.
The most widely used estimation procedures in CIFA con-
sist of three stages. In the first stage, the thresholds 7 are
estimated for each variable separately using maximum like-
lihood. Thus, only univariate information is used in the first
stage. In the second stage, polychoric correlations are esti-
mated. A polychoric correlation is the correlation between
two latent response variables y;. Each polychoric correla-
tion is estimated separately, with the thresholds estimated in
the first stage and by maximum likelihood. Only bivariate
information is used in the second stage. In the third stage, all
estimated thresholds and polychoric correlations are gath-
ered into a vector k and the model parameters are estimated
by minimizing the function®

F=® — k0)Wgk — k(0)). (10)

In Equation 10, k(0) denotes the restrictions imposed by the
model on the thresholds and polychoric correlations and 0
denotes the model parameters. These can be the unstand-
ardized parameters o and 3 or the standardized parameters
7 and A, depending on which parameterization is used. If the
latent traits are correlated, 0 also includes the parameters of
their correlation matrix W.

Different weight matrices W can be used in Equation 10.
Let I" be the asymptotic covariance matrix of the thresholds
and polychoric correlations estimated in the first two stages.
Some popular choices of W are (a) W = I'"! (weighted least
squares [WLS]; Muthén, 1978, 1984); (b) W = (diag(l)) '
(diagonally weighted least squares [DWLS]; Muthén, du Toit,
& Spisic, 1997); and (c) W =1 (unweighted least squares
[ULS]; Muthén, 1993).

Consistent and asymptotically normal parameter esti-
mates as well as standard errors can be obtained for all three
estimation methods. Asymptotically, the WLS parameter
estimates have smallest variance among the class of estima-
tors obtained by minimizing Equation 10. Thus, WLS is
asymptotically efficient within this class of estimators.
However, in practice, the behavior of WLS is very poor
unless the sample size to model size ratio is very large.
DWLS and ULS yield much better parameter estimates in

small samples (Dolan, 1994; Flora & Curran, 2004;
Muthén, 1993), and some evidence suggests that there is
little difference between DWLS and ULS when modeling
categorical data (Maydeu-Olivares, 2001).

In general, CIFA estimation of Samejima’s GRM is
computationally much more efficient than FIML estima-
tion. Integration is performed for each item separately (to
estimate the thresholds) or for pairs of items separately
(to estimate the polychoric correlations). As a result,
regardless of the number of latent traits, only univariate
and bivariate integrals are involved. However, the com-
putational efficiency of CIFA estimation methods is
achieved at the expense of disregarding three-way and
higher order associations among the items.”> As the stud-
ies described in the next section show, it is not yet clear
if, through disregard of three-way and higher order in-
formation, CIFA estimation methods result, in finite sam-
ples, in worse parameter estimates and standard errors
than do FIML methods.

Previous Research on the Empirical Behavior of
FIML and CIFA Estimators

Table 1 lists all simulation studies that have investigated
the performance of either FIML or CIFA methods in esti-
mating IRT models for rating data.® We have also included
the major studies that have compared the behavior of FIML
and CIFA methods in applications. Finally, we have in-
cluded the major review articles (e.g., McDonald & Mok,
1995; Mislevy, 1986).

As it can be seen in Table 1, a number of studies have
compared the behavior of FIML with that of one or more
CIFA methods in applications (e.g., Bolt, 2005; Janssen

*When the standardized parameters are estimated, and if no
restrictions are imposed among the thresholds 7, the third stage
estimation can be performed by minimizing a function of the
polychoric correlations alone.

3 Three-way and four-way associations among the items are
used to estimate the asymptotic covariance matrix I' of the esti-
mated thresholds and polychoric correlations. The estimated matrix I'
is used for parameter estimation in CIFA-WLS. In CIFA-ULS esti-
mation, this matrix is used solely to compute the standard errors,
not to estimate parameters.

6 There is some confusion in the literature about labeling of CIFA
estimators. For instance, the WLSM and WLSMYV CIFA estimators
available in Mplus (Muthén & Muthén, 2004) are in fact the same
estimator, a DWLS CIFA estimator. WLSM and WLSMV differ
solely in the choice of goodness-of-fit test. The CIFA procedures
(WLS, DWLS, and ULS) implemented in Mplus are equivalent to the
CIFA procedures implemented in Lisrel except for the formula used
to compute the asymptotic covariance matrix of the sample thresholds
and polychoric correlations. The formulas used in Lisrel and Mplus to
compute this matrix are asymptotically equivalent but may yield very
slight differences in finite samples.



280

Table 1

FORERO AND MAYDEU-OLIVARES

Major Studies on Factors Affecting Estimation Method Performance of Latent Trait Models for Categorical Variables (in

Descending Chronological Order)

Estimator
Type of No. CIFA- CIFA- CIFA-
Paper study® replications FIML CIFA-WLS DWLS ULS NOHARM*
Muthén & Kaplan (1985) S 1,000 v
Mislevy (1986) R v v v
Reise & Yu (1990) S 1 v
Baker (1991) S 100 v
Parry & McArdle (1991) S 1 v v v
Knol & Berger (1991) S 10 v v
Kaplan (1991) S 100 v
Rigdon & Ferguson (1991) S 300 v Vv v
Stone (1992) S 100 v
Muthén (1993) S 500 v
Potthast (1993) S 100 v
Reiser & VanderBerg (1994) S 500 v v
Dolan (1994) S 100 v
McDonald & Mok (1995) R — v v v
Boulet (1996) S 100 v v
Janssen & De Boeck (1999) E — v v
Schumaker & Beyerlein (2000) E — v
Tuerlinckx & De Boeck (2001) S 50 v
Finger (2001) S 5 v v v
Gosz & Walker (2002) S 100 v v
DiStefano (2002) S 100 v
Oranje (2003) S 1,000 v v
Tate (2003) E/S 1 v v v v
Flora & Curran (2004) S 500 v v
Bolt (2005) R — v v v v
Beauducel & Herzberg (2006) S 500 v
Wirth & Edwards (2007) R — v v v
This study S 1,000 v v
Note. FIML = full information maximum likelihood; CIFA = categorical item factor analysis; WLS = weighted least squares; DWLS = diagonally

weighted least squares; ULS = unweighted least squares; NOHARM = program that estimates the normal ogive form of Samejima’s model for
dichotomous variables in two stages with ULS; S = simulation study assessing the performance of at least one method via Monte Carlo simulation; R =
review or analytical study about the performance of at least one method; E = empirical study comparing two estimation methods with real data; U =
unidimensional; M = multidimensional; P = polytomous; D = dichotomous.

* CIFA-NOHARM differs from CIFA-ULS in that estimation proceeds in two stages in CIFA-NOHARM and in three stages in CIFA-ULS.

& De Boeck, 1999; Oranje, 2003; Schumaker & Beyer-
lein, 2000). In general, these studies have found small
differences among the estimators compared. However,
simulation studies in which the true model is known are
needed for verification of the theoretically superior per-
formance of FIML over CIFA methods. Only Reiser and
VandenBerg (1994), Boulet (1996), and Gosz and Walker
(2002) have compared these methods using at least 100
replications per condition. In addition, Reiser and
VanderBerg used WLS, the CIFA method that yields
poorer results in finite samples.” Boulet and Gosz and
Walker performed CIFA using NOHARM (Fraser &
McDonald, 1988), a program that estimates the normal
ogive form of Samejima’s model for dichotomous vari-
ables in two stages with ULS.®

Reiser and VanderBerg (1994) compared the performance
of FIML and CIFA-WLS in models with 4 to 10 variables and
a single latent trait. Sample size was 500 observations in all
conditions, and parameter values were the same for all condi-

7 Reiser and VanderBerg (1994) estimated the model in a single
stage, as did Christoffersson (1975), rather than in three stages.

8 First, each threshold is estimated separately, as in other CIFA
procedures. In a second stage, the remaining parameters of the
model are estimated with ULS using bivariate information and
holding the first-stage estimates fixed. CIFA-NOHARM is closely
related to CIFA-ULS, in which estimation proceeds in three
stages, with tetrachoric/polychoric correlations being computed in
an intermediate stage. In practice, NOHARM and CIFA-ULS
yield very similar results (Maydeu-Olivares, 2001).
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Table 1 (continued)
Study variables Assessed outcomes
No. No. Sample Model Item Item Parameter Standard
dimensions categories size size skewness slope estimates erTors Convergence
U P Vv v v v
UM D Vv v Vv Vv
U P Vv Vv v
U D v v Vv
U D v v v Vv v
UM D v v v
UM P v v v v
M P Vv v v Vv Vv
U D Vv v Vv
U D/P v v Vv
M P v v v v
9] D v v Vv
U D/P Vv v v v
UM — Vv Vv
U D Vv v Vv
M D v
U D v
§) D v v v
UM D Vv v v
M D v
M P Vv v Vv Vv Vv
UM D/P v v Vv v
UM D v v
UM D/P v v v Vv Vv v
M D v v
U/D D/P Vv v v Vv
U/D D/P Vv v v Vv Vv
UM D/P v v v v Vv Vv v

tions. Reiser and VanderBerg concluded that the use of high-
order marginals gives FIML slight advantages in holding down
parameter bias of the estimator in finite samples. Boulet (1996)
compared ULS and FIML using a unidimensional 2PL with 15
to 60 indicators, 250 to 1,000 observations, and latent traits
differing in skewness. Boulet concluded that ULS and FIML
showed similar trends in terms of relative bias and that ULS
recovered item parameters more accurately when the latent
trait was normal. Gosz and Walker (2002) compared FIML
and CIFA in fitting data generated from a 2PL. Using 2,500
observations and 40 items, they concluded that parameter
estimates were more accurate when ULS was used.
Simulation results comparing the performance of different
CIFA estimators have clearly revealed that WLS is the worst
estimator in small samples (e.g., Muthén, 1993), in terms of

both parameter estimates and standard errors. The weight ma-
trix in WLS estimation depends on four-way sample moments,
which are very unstable unless sample size is very large rela-
tive to model size (Muthén & Kaplan, 1992). In contrast,
DWLS and ULS show a much better performance in small
samples. Thus, Flora and Curran (2004) found that DWLS
yields good results with sample sizes of 100 observations.
Research on ULS performance suggests good parameter re-
covery, with small amounts of negative bias decreasing with
increasing sample sizes (Finger, 2001; Gosz & Walker, 2002;
Knol & Berger, 1991; Parry & McArdle, 1991; Reise & Yu,
1990; Tate, 2003).

For its part, FIML has exhibited good parameter recovery
with small-to-moderate bias that diminishes as sample size
and number of indicators per factor increase (Baker, 1987;
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Oranje, 2003; Reise & Yu, 1990; Tate, 2003). Parameter
bias has been found to be worse when items are extreme in
either factor loading or skewness (Drasgow, 1989). Stan-
dard error estimation of loadings has been found to be
problematic with sample sizes of about 200 observations
(Drasgow, 1989; Reiser & VanderBerg, 1994).

In closing, existing literature suggests that FIML and
CIFA methods perform similarly in terms of parameter
estimation. WLS yields good parameter estimates provided
that sample size is large enough to meet its asymptotical
properties, but DWLS and ULS have shown better perfor-
mance in small samples. Concerning standard errors, the
literature suggests that FIML and WLS yield poorer results,
in particular when indicators have extreme item parameters.
However, all in all, the previous studies provide us with a
fragmentary view of the empirical performance of FIML
and CIFA methods in estimating Samejima’s GRM. Vari-
ous studies have investigated the effect of different factors
that may influence the performance of the estimators, but no
study has investigated the effect of all possible factors
simultaneously. This approach is needed and could reveal
the existence of possible interactions among the factors. In
addition, there are a number of aspects that has never been
investigated, such as the behavior of FIML standard errors
for multidimensional models.

A Monte Carlo Investigation of the Performance of
FIML and CIFA-ULS Parameter Estimates and
Standard Errors for the Graded Model

We performed a simulation study to compare the perfor-
mance of FIML and CIFA-ULS in estimating Samejima’s
GRM under varied conditions of dimensionality, factor load-
ing, sample size, number of items per factor, number of re-
sponse alternatives per item, and item skewness. All simula-
tions were performed with Mplus Version 3.13 (Muthén &
Muthén, 2004).” Default convergence criteria were used for
both methods. For FIML, Gauss—Hermite integration with 64
points was used for unidimensional models and Gauss—Her-
mite integration with 8 points per dimension (for a total of 512
points) was used for the three-dimensional models. We verified
the results for both FIML and ULS against our own code in
several conditions and obtained comparable results. ULS was
the CIFA method of choice, because previous research has
revealed that it performs much better than WLS in small
samples.

We investigated 324 conditions per estimation method and
obtained 1,000 replications for each condition. The 324 con-
ditions were obtained using a factorial design by crossing.

1. Three sample sizes (200, 500, and 2,000 respon-
dents).

2. Two levels of latent trait dimensionality (one and
three latent traits).

3. Three test lengths (9, 21, and 42 items).

4. Three levels of factor loadings A\ (or, alternatively,
B parameters): low (\ = .4, B = 0.74),'° medium
(A = .60, B = 1.27), and high (A = .8, B = 2.26).
Factor loadings were set equal across items in
generating the data (not in estimating the model)
to facilitate the reporting of the findings.

5. Six item types (three types consist of items with
two categories, and three types consist of items
with five categories) that varied in skewness
and/or kurtosis.

The sample sizes were chosen to be small to large in
typical applications. Also, small-to-medium test lengths
were chosen because prior results have suggested that the
performance of parameter estimates and standard errors
improves with increasing test length. Finally, we include
items with typical low (.4) to large (.8) factor loadings.

The item types used in the study are depicted in Figure 1.
These item types were chosen to be typical of a variety of
applications. Items of Types I to III consist of only two
categories. Type III items have the highest item skewness
and kurtosis. The threshold was chosen such that only
10% of respondents endorse the items. Type II items are
endorsed by 15% of respondents, resulting in smaller
values of skewness and kurtosis. Items of Types II and III
are typical of applications in which items are seldom
endorsed. On the other hand, Type I items are endorsed
by 40% of respondents. These items have low skewness,
and their kurtosis is smaller than that of a standard
normal distribution."' Items of Types IV through VI
consist of five categories. The skewness and kurtosis of
Type IV items closely match those of a standard normal
distribution. Type IV items are also symmetric (skew-
ness = 0); however, the kurtosis is higher than that of a
standard normal distribution. These items can be found in
applications in which the middle category reflects an

9 Similar results would be expected when using any other soft-
ware program for SEM that implements CIFA estimation.

19 Throughout the article,  and B parameter values are given in
the logistic scale implied by Equation 5.

' The skewness and kurtosis of a standard normal distribution are
0 and 3, respectively. We subtracted 3 from the kurtosis values, so that
0 indicated no excess kurtosis, a positive value indicated excess
kurtosis greater than that of a normal distribution, and a negative value
indicated excess kurtosis less than that of a normal distribution.
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Figure 1.

undecided position and a large number of respondents
choose this middle category. Finally, Type V and Type
VI items show a substantial amount of skewness and
kurtosis. For these items, the probability of endorsing
each category decreases as the category label increases.

In the case of three-dimensional models, the factors were
set up to be orthogonal, with one third of the items serving
as indicators for each dimension. This setup resulted in six
conditions of number of indicators per factor (3, 7, 9, 14, 21,
and 42 items).

Choice of Link Function and Parameterization

A comparison of FIML and CIFA is difficult, because
unstandardized parameters (o and ) and the logistic
GRM are most often used in FIML, whereas standardized
parameters (7 and N) are used and only the normal GRM
can be estimated with the sequential CIFA procedures.
Regarding the choice of model, we chose to use the
logistic GRM for FIML to increase face validity. Thus,
for FIML, data were generated and estimated with the
logistic GRM. For CIFA, data were generated and esti-
mated with the normal GRM. In both cases, we used the
true parameter population values as starting values to
maximize the probability of convergence. Regarding the
choice of parameterization, each estimation method has a
“natural” parameterization (i.e., unstandardized parame-
ters for FIML and standardized parameters for CIFA).
For both estimation methods, use of the alternative pa-
rameterization leads to complex model constraints that
may hinder the convergence of the estimation process
and, as a result, may affect the accuracy of parameter

Category
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Bar graphs of the different types of items employed in the simulation study.

estimates and standard errors.'> To thoroughly investi-
gate the effect of the choice of parameterization, we
performed CIFA estimation twice, in one case minimiz-
ing with respect to the unstandardized parameters and in
the second case minimizing with respect to the standard-
ized parameters."?

Parameter estimates and standard errors obtained using
the normal and logistic variants of the GRM model can be
put in the same metric by using the scaling constant D =
1.702. Haley (1952) showed that the use of this constant
puts the estimates on the same scale (within .01 units),
and the constant D has been used in many published
descriptions of the 2PL to put the logistic parameters of
this model in the scale of the normal ogive parameters.
That is, often

1
Pr(y; = 1im) = 1 + exp[—Dan — b;)]

'2 If the unstandardized parameters are used in CIFA, the poly-
choric correlations implied by the model include products of
inverses of square roots of functions of the model parameters (see
the Appendix). Alternatively, if the standardized parameters are
used in FIML, the conditional probabilities in Equation 6 include
inverses of square roots of functions of the model parameters.

13 Selection of parameterization (standardized or unstandard-
ized) is performed in Mplus by choosing “delta” or “theta” param-
eterization, respectively. We used the same starting seed in the
simulations to ensure that the data sets being analyzed were
identical.
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is used instead of Equation 1. Here, FIML is treated as the
benchmark method. Consequently, CIFA parameter esti-
mates and their standard errors are transformed to the lo-
gistic metric using the constant D. See the Appendix for
details.

In summary, in this simulation study we investigated the
performance of three procedures.

1. FIML: FIML estimation of the logistic GRM
model using unstandardized parameters.

2. Unstandardized ULS: CIFA-ULS estimation of
the normal ogive GRM model using unstandard-
ized parameters.

3. Standardized ULS: CIFA-ULS estimation of the
normal ogive GRM model using standardized pa-
rameters.

Parameter estimates and standard errors for CIFA were
transformed into the unstandardized logistic metric used
in FIML. All results are provided via this parameteriza-
tion and link function to ensure direct comparability of
the estimates.

The following outcomes were investigated: (a) proportion
of proper solutions per condition, (b) relative bias and
root-mean-square error of approximation (RMSE) of pa-
rameter estimates, (c) relative bias of standard errors, and
(d) coverage rates.

The reader must be aware that these three methods
constitute only two estimators, namely FIML and CIFA-
ULS. We stress that although it may appear that three
different estimators were used, procedures 2 and 3 above
are in fact one and the same. The results obtained should
not be affected by the parameterization used for minimi-
zation. However, in very rare and extreme cases, always
less than 1/100 of the replications and sometimes only
1/1,000 of the replications, different estimates are ob-
tained for purely numerical reasons. When this occurs,
substantial differences between both sets of estimates
could appear, and aggregating results over replications
within an experimental condition exaggerates differences
that are in fact due to a handful of replications. We
present both sets of results to illustrate how the choice of
parameterization used for the minimization may indeed
yield different results, if only in extremely rare applica-
tions.

Further details on Samejima’s model and the parameter-
izations employed in this paper are given in the Appendix.
In addition, we provide as supplementary materials that can
be downloaded a data file taken from Maydeu-Olivares,
Rodriguez-Fornells, Gémez-Benito, and D’Zurilla (2000)
and detailed Mplus input files that can be used to estimate
the GRM with CIFA-ULS and FIML.

Results

Convergence Rates

We define convergence rate as the percentage of replica-
tions per condition that converged with the Mplus default
values for each method, excluding improper solutions. A
solution was deemed improper when at least one esti-
mated N parameter was larger than .999 in absolute value
(or equivalently when IBl >122.35l). As in Flora and
Curran (2004), nonconvergent and improper solutions
were considered invalid observations and were removed
from analysis.'*

Across the 324 conditions investigated, the average con-
vergence rate was 98.3% for FIML, 96.7% for unstandard-
ized ULS, and 96.4% for standardized ULS. Thus, on av-
erage, convergence rates obtained by the three methods
were satisfactory (and somewhat better for FIML). How-
ever, convergence rates differed depending on the number
of indicators per dimension, item skewness, and sample
size.

For all methods, convergence rates were substantially
worse when only three indicators per dimension were
present. Again, in this situation, convergence rates were
better for FIML: Average convergence was 90.6% for
FIML, 87.3% for unstandardized ULS, and 85.4% for stan-
dardized ULS. When the number of indicators per dimen-
sion was seven or more, convergence rates were similar on
average across methods (99%). Also, convergence rates for
all methods worsened as skewness increased. Again, con-
vergence rates were somewhat better for FIML. Thus, when
item skewness was greater than or equal to 1.5, average
convergence was 98.2% for FIML, 96.6% for unstandard-
ized ULS, and 96.4% for standardized ULS. When item
skewness was less than 1.5, convergence performance was
similar on average across methods (99%). Finally, conver-
gence improved as sample size increased.

Table 2 summarizes convergence rates by estimation
method across number of indicators per factor (3 or =7),1°
item skewness (<1.5 or =1.5), and sample size (200, 500,
or 2,000 observations). As it can be seen in Table 2, sample
size is the main threat for an accurate estimation. Neverthe-

'* An improper or nonconvergent solution is of no use to the
applied researcher. Thus, removal of these cases took us one step
closer to applied research settings, as we increased the “external
validity” of the results (for further implications of this strategy, see
Chen, Bollen, Paxton, Curran, & Kirby, 2001). Nonetheless, we
conducted additional analyses that included the improper solu-
tions. Though these analyses resulted in changes in the outcome
statistics, the conclusions did not change qualitatively. Evidence
suggests that improper solutions mainly affect the problematic
cases.

!> Recall that we do not consider models with 4 to 6 indicators
per dimension.
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Percentage of Valid Replications Across Conditions

Indicators per dimension

3 =7

Valid replications

Valid replications

N and method Skewness Minimum M Minimum M
200
FIML <1.5 28.7 87.2 98.9 99.9
>1.5 41.0 78.8 79.8 99.1
Unstandardized ULS <l1.5 42.9 86.0 98.8 99.9
>1.5 13.7 59.5 154 92.8
Standardized ULS <1.5 23.7 77.8 80.6 97.7
>1.5 4.00 46.9 46.7 93.4
500
FIML <l1.5 57.3 93.3 100.0 100.0
>1.5 48.9 85.3 95.8 99.9
Unstandardized ULS <1.5 80.0 97.1 100.0 100.0
>1.5 36.7 83.3 71.7 98.7
Standardized ULS <1.5 65.3 94.7 100.0 100.0
>1.5 16.4 75.9 95.7 99.9
2,000
FIML <15 98.3 99.8 100.0 100.0
>1.5 95.2 99.2 100.0 100.0
Unstandardized ULS <1.5 99.7 99.9 100.0 100.0
>1.5 88.0 98.3 100.0 100.0
Standardized ULS <1.5 99.7 99.9 100.0 100.0
>1.5 76.5 96.7 100.0 100.0

Note.

Valid replications are defined as the number of converging replications with proper solutions (A > 0.999

for standardized ULS or § > 22.35 for unstandardized ULS and FIML). FIML = full information maximum

likelihood; ULS = unweighted least squares.

less, even at the lowest sample size considered (200 obser-
vations), convergence rates are on average 99% when the
number of indicators per dimension is at least 7. When
sample size is at least 500 observations and there are at least
7 indicators per dimension, convergence rates are at least
95% for standardized ULS and FIML and 72% for unstand-
ardized ULS. In contrast, average convergence rates are
unacceptable (i.e., less than 80% on average) for all meth-
ods when the number of indicators per dimension is 3,
skewness is greater than 1.5, and sample size is 200 obser-
vations.

Relative Bias and RMSE of Parameter Estimates

To compare the performance of the different methods
considered, we computed the relative bias of parameter
estimates as a percentage using (0 — 6)/0)*100, where 0 is
the average parameter estimate across valid replications and 6
denotes the true parameter value. We considered that values
of relative bias of less than 10% are acceptable, values from
10% to 20% indicate substantial bias, and values larger than
20% indicate an unacceptable degree of bias. The percent-
age of conditions falling within each bias category is dis-
played in Table 3.

In regard to the intercept parameters (o), Table 3 shows
that the relative bias for most conditions was less than 10%,
regardless of the estimation method. However, the perfor-
mance of FIML was slightly superior. Several trends were
readily apparent. First, relative bias is generally very small
and seldom negative. Second, on average, relative bias is
smaller for FIML. Third, on average, relative bias increases
as item skewness increases, provided the number of indica-
tors per dimension is three and item skewness is greater than
1.5. This effect is more pronounced for standardized ULS.
Fourth, the variability of the relative bias increases with
increasing item skewness.

Bias decreased with increasing sample size. Indeed, al-
most all conditions in which relative bias was larger than
10% consisted of 200 observations. Relative bias was also
affected by the size of the factor loadings, but the trend was
different for each method. In limited information methods,
higher bias was associated with low slopes (3 = 0.74, A =
0.40), whereas for FIML higher bias was associated with
high slopes (B = 2.27, A = 0.80).

RMSE was computed to assess the combined effect of
parameter bias and parameter variance. As criterion, RMSE
has no accepted cutoff value with which to decide whether
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Table 3
Percentage of Conditions in Each Method Showing 10%, 10%—
20%, 20%—-100%, and More Than 100% Relative Bias

Relative bias
Estimate and method <10% 10%-20% 20%-100% >100%

Intercept
FIML 97.5 1.5 0.9 0.0
Unstandardized ULS 95.4 1.9 2.8 0.0
Standardized ULS 94 .4 2.5 3.1 0.0
Slope
FIML 95.7 3.1 1.2 0.0
Unstandardized ULS 93.8 1.9 3.7 0.6
Standardized ULS 97.8 2.2 0.0 0.0
Intercept SE
FIML 93.8 1.9 1.9 2.5
Unstandardized ULS  92.0 1.5 0.0 6.5
Standardized ULS 92.9 0.9 2.2 4.0
Slope SE
FIML 93.5 1.2 3.1 2.2
Unstandardized ULS  92.0 0.0 1.5 6.5

Standardized ULS 93.2 0.6 2.2 4.0

Note. Comparison was performed in «, B logistic parameterization.
FIML = full information maximum likelihood; ULS = unweighted least
squares; SE = standard error.

an estimate is acceptable or not,'® but it is useful when
comparing the quality of two estimators, as it represents a
trade-off between bias and variability. Nevertheless, the pattern
of results with RMSE was almost identical to the pattern found
with relative bias. This is due to the fact that estimation
performance in the present study was mainly driven by the bias
of parameter estimates, rather than their variance.

This comparison is shown in Table 4, which displays the
average values for relative bias and RMSE by number of obser-
vations, indicators per factor (with three, seven, and more than
seven indicators per factor), item skewness (<1.5 and =1.5), and
true (3 parameter. As the table shows, it was mainly conditions
with three indicators per factor and n = 200 that showed substan-
tial amounts of positive bias. With this sample size and 3 indica-
tors per factor, FIML was more accurate than limited information
methods. This difference disappeared when the skewness was
high and the slope was at least 1.27, a setting at which standard-
ized ULS slightly outperforms FIML in terms of RMSE. Differ-
ences in estimation precision disappeared as the number of indi-
cators per factor increased. Limited information methods were
marginally more precise in terms of relative bias when 7 or more
indicators were used per factor, and it was so with even the
smallest sample size (n = 200) and particularly when true slopes
were low (B = 0.74, N = 040).

With regard to intercept RMSEs, limited information and
FIML yielded comparable values in almost every condition
with more than three indicators per factor and 200 observa-
tions. Standardized ULS was the method with the smallest
RMSEs. There were certain conditions in which this was not

the case. FIML outperformed limited information methods in
the case of three indicators per factor, n = 200, and skewness
of less than 1.5 for all slope values and when skewness was
greater than 1.5 and slopes were less than or equal to 1.27.
There were other conditions for which FIML showed smaller
RMSE:s than did standardized ULS, such as in the case of three
indicators per factor, low skewness (skewness <1.5) and low
slope (B = 0.74), no matter the sample size.

With regard to the slope parameters ([3), Table 3 shows that
in most conditions acceptable levels of bias were obtained
regardless of the estimation method. Much as with the inter-
cept parameters, increasing skewness increased estimation
bias, whereas increasing sample size, the number of indicators
per factor, and the number of categories per item improved the
accuracy of the estimates. Also, when all other factors were
held constant, a higher slope improved estimation.

The sign of the bias for slopes was most often positive,
although in some conditions both methods underestimated the
true parameters. We see from Table 3 that, on average, relative
bias was larger for slopes than it was for intercepts. Again, bias
increased in models with only three indicators per factor. Also,
bias increased with increasing skewness, particularly when the
number of indicators was only three and skewness was larger
than 1.5. Almost all conditions in which more than 10% bias
was obtained had just three indicators per factor.

Table 5 displays the average values for (3 relative bias and
RMSE by number of observations, indicators per factor (with
three, seven, and more than seven indicators per factor), item
skewness (<.5 and =1.5), and true 3 parameter. As this table
shows, estimation inaccuracies were more serious in the case
of unstandardized ULS, which was more affected by these
factors. Also, for all methods, parameter estimation improved
with increasing true slope. Estimation inaccuracies appeared in

'S Any choice of statistic for comparing the estimators has its
pros and cons. RMSE is a common criterion when comparing
estimators. As RMSE considers bias and parameter variability, it is
very appealing when there is a trade-off between the two. How-
ever, the RMSE metric is dependent on the scale of the data, so it
is not possible to provide an accepted cutoff criterion to point out
when estimators fails. Another disadvantage of RMSE is that it is
not possible to compute a RMSE for standard errors.

On the other hand, relative bias may be used for identifying
unacceptable conditions through a cutoff criterion. Nevertheless, this
might lead to misleading results whenever a parameter estimate is
very close to zero, as relative bias would be artificially inflated by the
denominator, even for very small departures from the true parameter.

There are other indices that could have been used, such as absolute
bias or mean square error, but we decided that using RMSE and
relative bias as indices to compare the estimators performance would
simplify comparisons for the reader. Comparability has been main-
tained throughout the paper because we computed all statistics and
indices using the logit intercept/slope (e, 3) parameterization familiar
to most IRT users. This was achieved in standardized ULS by using
Equation A. 13 (see Appendix).
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Average Percentage of Relative Bias and Average RMSE (in Parentheses) of o Parameter Estimates for Each Method by Number of

Observations, Indicators per Factor, Item Skewness, and True (3 Parameter

Observations and

Method

indicators per FIML () Unstandardized ULS () Standardized ULS (3)
factor Skewness 0.74 1.27 227 0.74 1.27 2.27 0.74 1.27 227
200

3 <1.5 06 (0.37) 05(0.36) 03(0.43) 18(1.10) 05(0.43) 04(0.44) —24(0.97) 44(0.64) 06 (0.74)
>1.5 12 (0.74) 09 (1.11) 16 (2.66) 62 (4.06) 28 (2.56) 21(2.42) 16 (1.04) 11(0.72) 12 (0.98)

7 <l1.5 02 (0.23) 02(0.27) 02(0.36) 02(0.22) 02(0.25) 02(0.35) 51(0.65) 02(0.25) 02(0.35)
>1.5 09 (0.86) 05 (0.60) 06 (0.89) 25(2.53) 04(0.59) 06 (0.89) 04 (0.35) 06 (0.64) 05 (0.67)

>7 <l.5 02 (0.22) 02(0.25) 02(0.34) 01(0.21) 01(0.24) 02(0.33) 01(0.21) 01(0.24) 02(0.33)
>1.5 04 (0.48) 04 (0.43) 05(0.72) 05(0.74) 02(0.41) 04 (0.71) 03 (0.44) 03(0.39) 04 (0.63)

500

3 <1.5 02 (0.19) 02(0.19) 01(0.25) 05(0.47) 02(0.18) 02(0.25) —40(1.39) 02(0.18) 02(0.25)
>1.5 12 (1.44) 15(2.00) 12(2.23) 30(2.57) 09(0.99) 06 (1.01) 07 (0.45) 08 (0.71) 07 (0.83)

7 <l.5 01 (0.14) 01(0.16) 01(0.22) 01 (0.13) 01(0.15) 01 (0.21) 01 (0.13) 01 (0.15) 01(0.21)
>1.5 03 (0.53) 02(0.28) 02(0.45) 02(0.33) 01(0.26) 02(0.43) 02 (0.33) 01(0.26) 02(0.43)

>7 <1.5 01 (0.14) 01 (0.16) 01(0.21) 00 (0.13) 00 (0.15) 01 (0.20) 00 (0.13) 00 (0.15) 01 (0.20)
>1.5 01 (0.20) 01(0.24) 02(0.39) 01(0.22) 01(0.22) 01 (0.38) 01 (0.18) 01 (0.22) 01 (0.38)

2,000

3 <l1.5 01 (0.08) 00 (0.09) 00(0.12) 01 (0.08) 00 (0.09) 00 (0.12) 01 (0.08) 00 (0.09) 00 (0.12)
>1.5 02 (0.23) 01(0.32) 02(0.65) 05(0.88) 01(0.23) 01 (0.30) 05 (0.75) 01 (0.23) 01 (0.30)

7 <l.5 00 (0.07) 00 (0.08) 00(0.11) 00 (0.07) 00 (0.08) 00 (0.10) 00 (0.07) 00 (0.08) 00 (0.10)
>1.5 00 (0.11) 00 (0.13) 01 (0.20) 00 (0.10) 00 (0.12) 00 (0.20) 00 (0.10) 00 (0.12) 00 (0.20)

>7 <1.5 00 (0.07) 00 (0.08) 00 (0.10) 00 (0.06) 00 (0.07) 00 (0.10) 00 (0.06) 00 (0.07) 00 (0.10)
>1.5 00 (0.09) 00 (0.12) 01(0.18) 00 (0.08) 00(0.11) 00 (0.18) 00 (0.08) 00 (0.11) 00 (0.18)

Note. Comparison was performed in «, 3 logistic parameterization. The true values B = 0.74, 1.27, 2.27 are equivalent to N = .4, .6, .8. Conditions with

more than 10% bias are in boldface. RMSE = root-mean-square error of approximation; FIML = full information maximum likelihood; ULS = unweighted

least squares.

similar conditions: small sample sizes (n = 200) that were used
to estimate a few, highly skewed indicators. In these condi-
tions, standardized ULS and FIML maintained the amount of
bias within a more restricted range than did unstandardized
ULS, which was the worst method. All in all, the amount of
bias for standardized ULS was acceptable except with n = 200
and three indicators per factor. The same results were found for
FIML, except that in this case, and if the slope was 1.27 or
more and skewness was low, FIML yielded accurate estimates.
No method performed accurately with three indicators per
factor and skewness of over 1.5 until 2,000 observations were
used, although standardized ULS performed slightly better in
such a setting than did the other two methods with n = 500.

The behavior of RMSE:s for slope parameters was similar to
that of the intercepts. FIML was superior in conditions with
more three indicators per factor and n = 200, but standardized
ULS was the method that otherwise displayed, in general,
smaller RMSEs. Again, there were exceptions to this pattern.
FIML showed smaller RMSEs than did standardized ULS in
the case of three indicators per factor, low skewness (<1.5),
and low slope (B = 0.74), regardless of sample size.

As far as slope and intercept parameter estimates are
concerned, there are only small differences in RMSE be-

tween standardized ULS and FIML, and standardized ULS
is in general slightly superior to FIML. FIML is superior to
standardized ULS in terms of RMSE only when the number
of indicators per factor is three and sample size is 200. Also,
with three indicators per dimension and low slopes (B =
0.74), FIML is sometimes superior to standardized ULS.

Relative Bias of Standard Errors

‘We computed the relative bias of the standard errors using
((SE; — sdy)/sdy)*100, where SE, is the average standard
error of a parameter estimate across valid replications and sdj
denotes the standard deviation of the parameter estimates
across valid replications. Notice that it is not possible to com-
pute a RMSE for standard errors, which are an essential part of
this study. To facilitate interpretation and give further insight
on relative bias interpretation, we provide standard deviations
of parameter estimates as a reference for comparisons between
the magnitudes of relative biases.

As shown in Table 3, acceptable levels of bias were obtained
in most conditions regardless of the estimation method (over
90% of the conditions). However, for all three methods the
performance of the parameter estimates was better than the
performance of the standard errors. Also, the percentage of
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Table 5

FORERO AND MAYDEU-OLIVARES

Average Percentage of Relative Bias and Average RMSE (in Parentheses) of 3 Parameter Estimates for Each Method by Number of
Observations, Indicators per Factor, Item Skewness, and True (3 Parameter

. Method
Observations and - -
indicators per FIML (B) Unstandardized ULS () Standardized ULS (8)
factor Skewness 0.74 1.27 2.27 0.74 1.27 227 0.74 1.27 227
200
3 <1.5 17 (0.59) 08 (0.51) 04 (0.52) 51 (1.73) 09 (0.66) 05 (0.61) 21(0.74) 14 (0.71) 10 (0.71)
>1.5 16 (0.91) 12 (0.94) 15(1.96) 120 (3.74) 44 (2.32) 26 (2.16) 41 (1.17) 19(1.07) 14 (1.39)
7 <1.5 04 (0.29) 02 (0.27) 02 (0.37) 03 (0.28) 02(0.26) 02 (0.35) 04 (0.36) 02(0.26) 02 (0.35)
>1.5 09 (0.85) 07 (0.59) 05 (0.77) 10 (2.22) 05 (0.60) 06 (0.81) 07 (0.51) 08 (0.68) 06 (0.67)
>7 <l1.5 02 (0.21) 02(0.23) 02 (0.33) 02 (0.20) 01 (0.22) 02 (0.31) 02 (0.20) 01 (0.22) 02 (0.31)
>1.5 05 (0.52) 05(0.42) 06 (0.63) —03(0.77) 02 (0.43) 04 (0.65) 02 (0.47) 02(0.43) 04 (0.60)
500
3 <1.5 07 (0.33) 02 (0.27) 01 (0.30) 15(0.81) 03 (0.27) 02(0.31) 05 (0.54) 03(0.27) 02 (0.31)
>1.5 26 (1.14) 21 (1.46) 11 (1.59) 80 (2.45) 15(0.97) 08 (0.94) 22(0.79) 19 (0.78) 11 (0.83)
7 <1.5 01 (0.17) 01 (0.16) 01 (0.22) 01 (0.16) 01 (0.16) 01 (0.21) 01 (0.16) 01 (0.16) 01 (0.21)
>1.5 05 (0.50) 02 (0.30) 01 (0.40) 03 (0.40) 02(0.30) 02 (0.41) 03 (0.40) 02(0.30) 02(0.41)
>7 <1.5 01 (0.13) 01 (0.14) 01 (0.20) 01 (0.13) 01 (0.14) 01 (0.19) 01 (0.13) 01(0.14) 01 (0.19)
>1.5 02 (0.25) 02 (0.24) 02 (0.35) —01(0.27) 01 (0.24) 02 (0.36) —01(0.23) 01 (0.24) 02 (0.36)
2,000
3 <1.5 01 (0.15) 00 (0.12) 00 (0.14) 02 (0.15) 01(0.12) 00 (0.14) 02 (0.15) 01 (0.12) 00 (0.14)
>1.5 06 (0.35) 02(0.31) 00 (0.49) 14 (0.85) 02 (0.27) 02 (0.29) 08 (0.72) 02(0.27) 02 (0.29)
7 <15 00 (0.08) 00 (0.08) 00 (0.11) 00 (0.08) 00 (0.08) 00 (0.10) 00 (0.08) 00 (0.08) 00 (0.10)
>.5 01 (0.16) 00 (0.14) —01 (0.19) 00 (0.15) 00 (0.14) 01 (0.19) 00 (0.15) 00 (0.14) 01 (0.19)
>7 <1.5 00 (0.06) 00 (0.07) 00 (0.10) 00 (0.06) 00 (0.07) 00 (0.09) 00 (0.06) 00 (0.07) 00 (0.09)
>.5 00 (0.12) 00 (0.12) 00 (0.17) 00 (0.11) 00 (0.12) 00 (0.17) 00 (0.11) 00 (0.12) 00 (0.17)
Note. Comparison was performed in «, 3 logistic parameterization. The true values B = 0.74, 1.27, 2.27 are equivalent to N = .4, .6, .8. Conditions with

more than 10% bias are shown in boldface. RMSE = root-mean-square error of approximation; FIML = full information maximum likelihood; ULS =

unweighted least squares.

conditions for which acceptable levels of bias were obtained is
similar across methods for the standard errors of the intercepts.
For the slopes, a similar number of conditions showed accept-
able bias for FIML and standardized ULS; for unstandardized
ULS, bias was somewhat worse. Remarkably, more than 100%
bias was obtained for all methods in a number of conditions.
Extreme bias is most likely for unstandardized ULS, followed
by standardized ULS and then FIML.

Tables 6 and 7 show the average bias for intercept and
slope standard errors by method, skewness level, model
size, and true parameter value. They also provide standard
deviations of parameter estimates. Overall, the behavior of
unstandardized ULS and FIML standard errors was similar.
Thus, we found that (a) most often, standard errors for
intercepts are overestimated and those for slopes are under-
estimated; (b) increasing skewness increased the variability
of the bias; (c) increasing skewness increased the bias for
models with only three indicators per dimension; and (d) in
some conditions with three indicators per factor, the bias of
the standard errors was positive and unacceptably high. The
main difference between the performance of these two
methods is that when the standard errors were unacceptable,
the magnitude of the bias was much larger for unstandard-

ized ULS than for FIML. The performance of standardized
ULS fell between that of these two methods.

As shown in Tables 6 and 7, all estimation methods
yielded unacceptable standard errors for both the slope
and the intercept parameters whenever the number of
indicators per dimension was three, item skewness was
large (=1.5), and sample size was no more than 500
observations. This pattern also appeared when skewness
was less than 1.5 and sample size was 200 observations,
although FIML provided accurate standard errors when the
slope parameter was high enough (8 = 1.27). ULS methods
yielded unacceptable standard errors for both intercepts and
slopes when the number of items per dimension was only three
and sample size was 200, especially with low slopes. This
circumstance changed when observations were increased to
500: All methods yielded good standard errors, provided that
the item skewness was low (<1.5). Even so, this increase in
sample size is not enough in the case of highly skewed items
(skewness = 1.5). FIML and unstandardized ULS (but not
standardized ULS) also yielded unacceptable standard errors
for slope parameters when there were seven indicators per
dimension, item skewness was large, and slopes were small
(B = 0.74).
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Average Percentage of Relative Bias of the Standard Errors and Average Standard Deviations (in Parentheses) for o Parameter for
Each Method by Number of Observations, Indicators per Factor, Item Skewness, and True (3 Parameter

. Method
Observations - -
and indicators FIML (B) Unstandardized ULS (B) Standardized ULS ()
per factor ~ Skewness 0.74 1.27 227 0.74 1.27 227 0.74 1.27 2.27
200
3 <1.5 18 (0.38) —01 (0.37) —01 (0.45) 1490 (1.20) 23 (0.45) —01 (0.45) 222 (1.06) 109 (0.45) 205 (0.45)
>1.5 174 (0.68) 238 (1.09) 576 (2.60) 5535 (3.82) 1245 (2.46) 152 (2.32) 762 (3.82) 122 (2.46) 33(2.32)
7 <15 —02(0.24) —02(0.27) —01 (0.37) —02(0.22) —01 (0.25) —02(0.35) 04 (0.24) —01 (0.25) —02 (0.35)
>1.5 74 (0.84) 13(0.59) —13(0.87) 601 (2.46) —03 (0.58) —11(0.87) 04 (2.46) 15(0.58) —10 (0.87)
>7 <1.5 —01(0.23) 00(0.26) 00(0.35) —01 (0.21) —01 (0.24) —00 (0.33) —01 (0.21) —01 (0.24) —01 (0.33)
>1.5 —11(0.46) —06(0.42) —09 (0.70) 33 (0.73) —07 (0.40) —09 (0.69) —20 (0.78) —07 (0.40) —08 (0.68)
500
3 <1.5 08 (0.20) —01 (0.20) 01 (0.26) 425(0.51) —01 (0.19) 00 (0.25) —01 (0.44) —01 (0.19) 00 (0.25)
>1.5 252 (1.42) 445(1.96) 110 (2.19) 3392 (2.48) 106 (0.96) 00 (0.99) 380 (2.48) 233(0.96) 28 (0.99)
7 <15 —01(0.14) —01(0.17) —01 (0.23) —01 (0.14) —01 (0.16) —01 (0.22) —01 (0.14) —01 (0.16) —01 (0.22)
>1.5 38 (0.52) —03(0.28) —04 (0.44) —01(0.33) —03(0.26) —04 (0.43) —01 (0.33) —03 (0.26) —04 (0.43)
>7 <1.5 00 (0.14) —01 (0.16) —01 (0.22) 00 (0.13) 00 (0.15) —01 (0.21) 00 (0.13) 00 (0.15) —01 (0.21)
>1.5 —04(0.20) —02(0.24) —03 (0.38) 03 (0.22) —02(0.22) —03 (0.38) —02(0.22) —02 (0.22) —03 (0.38)
2,000
3 <l1.5 01 (0.08) 01(0.09) 01(0.12) —01(0.08) —01 (0.09) —01 (0.12) —01 (0.08) —01 (0.09) —01 (0.12)
>1.5 03 (0.23) —16 (0.32) —22(0.65) 496 (0.87) —06 (0.23) —03 (0.29) 10 (0.87) —06 (0.23) —03 (0.29)
7 <l.5 00 (0.07) 00(0.08) 01(0.11) 00 (0.07) —01(0.08) —01(0.11) 00 (0.07) —01 (0.08) —01 (0.11)
>1.5 —01(0.11) 00(0.13) 00 (0.20) —02 (0.10) —01 (0.12) —01 (0.20) —02 (0.10) —01 (0.12) —01 (0.20)
>7 <1.5 00 (0.07) 00 (0.08) 00(0.11) 00 (0.06) 00(0.07) 00(0.10) 00 (0.06) 00 (0.07) 00 (0.10)
>1.5 00 (0.09) —01 (0.12) —01 (0.18) —01(0.08) 00 (0.11) —01 (0.18) —01 (0.08) 00 (0.11) —01 (0.18)
Note. Comparison was performed in «, 3 logistic parameterization. The true values B = 0.74, 1.27, 2.27 are equivalent to N = .4, .6, .8. Conditions with

more than 10% bias are shown in boldface. FIML = full information maximum likelihood; ULS = unweighted least squares.

Even if few in number, standard error inaccuracies were
quite dramatic for ULS methods—especially for unstand-
ardized ULS, for which almost every positively biased
condition showed much more than 100% relative bias—and
they were found across all skewness levels. In contrast, the
FIML standard errors with unacceptable bias were confined
to the more extreme item skewness levels.

Parameter Coverage

Figure 2 shows the coverage of 95% confidence intervals for
parameter estimates for all 324 conditions investigated. Cov-
erage was adequate (between 92.5% and 97.5% for 95% con-
fidence intervals) for most conditions across methods. For a
parameters, coverage was similar across methods, except for
three conditions for which FIML yielded somewhat unaccept-
able coverages. These conditions involved models with only
three extremely skewed indicators per dimension and medium-
to-high slopes (B = 1.27) and were estimated with 500 or
fewer observations. For 3 parameters, FIML resulted in more
accurate coverages than did ULS. The latter yielded somewhat
inaccurate coverages, regardless of the number of indicators
per dimension, when sample size was small (200 observations)
and items were skewed. It is interesting to compare the cov-
erage rates for standardized and unstandardized ULS. As

shown in Figure 2, in general, coverage rates for unstandard-
ized ULS were more accurate and less affected by item
skewness than were coverage rates for standardized ULS.
However, in those conditions for which coverage rates were
unacceptable, they were far more unacceptable for unstand-
ardized than standardized ULS. Across methods, slope cov-
erage was acceptable as long as sample size was larger than
200 observations. Models with few indicators per factor
were prone to yield inflated coverage values.

Discussion

Our purpose in this simulation study was to investigate the
limits of the good performance of FIML in estimating IRT
models by manipulating a comprehensive set of factors that
could affect its performance. Due to the computational de-
mands for this estimation method, previous research on the
finite sample behavior of this asymptotically optimal estimator
was rather fragmentary; only a few conditions were investi-
gated, and most often the number of replications was insuffi-
cient. Two issues that had scarcely been addressed in the
literature and that have been investigated in this study are the
behavior of FIML standard errors and the behavior of FIML in
multidimensional models.
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Table 7

FORERO AND MAYDEU-OLIVARES

Average Percentage of Relative Bias of the Standard Errors and Average Standard Deviations (in Parentheses) for 3 Parameter for
Each Method by Number of Observations, Indicators per Factor, Item Skewness, and True (3 Parameter

. Method
Observations - -
and indicators FIML (B) Unstandardized ULS (B) Standardized ULS ()
per factor ~ Skewness 0.74 1.27 227 0.74 1.27 227 0.74 1.27 2.27
200
3 <1.5 33 (0.58) —02 (0.50) —01 (0.51) 1530 (1.69) 24 (0.65) —04 (0.60) 243 (0.72) 110 (0.70) 189 (0.69)
>1.5 125 (0.90) 211 (0.92) 568 (1.92) 5025 (3.61) 1145 (2.25) 144 (2.08) 735(1.13) 120 (1.04) 30 (1.30)
7 <1.5 —06(0.28) —03(0.27) —02(0.36) —09 (0.28) —05 (0.26) —04 (0.35) —01 (0.36) —05 (0.26) —04 (0.35)
>1.5 48 (0.85) 11(0.58) —11(0.76) 518 (2.21) —04 (0.60) —10 (0.80) —04 (0.51) 10 (0.67) —09 (0.66)
>7 <1.5 —=03(0.21) —02(0.23) —02 (0.32) —06(0.20) —04 (0.22) —04 (0.31) —06 (0.20) —04 (0.22) —04 (0.31)
>1.5 —=12(0.52) —06(0.42) —07 (0.62) 19 (0.77) —09 (0.43) —08 (0.64) —24 (0.47) —09 (0.43) —07 (0.59)
500
3 <1.5 16 (0.33) —02(0.27) 00 (0.30) 419 (0.80) —03(0.27) —02 (0.31) —02 (0.53) —03 (0.27) —02 (0.31)
>1.5 239 (1.12) 408 (1.43) 109 (1.56) 3097 (2.38) 97 (0.95) 01 (0.92) 356 (0.77) 210 (0.76) 27 (0.81)
7 <15 —02(0.16) —02(0.16) —02(0.22) —04 (0.16) —02 (0.16) —02 (0.21) —04 (0.16) —02 (0.16) —02 (0.21)
>1.5 33 (0.50) —03 (0.30) —03 (0.40) —02(0.40) —03(0.29) —03 (0.41) —02 (0.40) —03 (0.29) —03 (0.41)
>7 <1.5 —01(0.13) —01(0.14) —01 (0.20) —02 (0.13) —02 (0.13) —02(0.19) —02 (0.13) —02 (0.13) —02 (0.19)
>1.5 —04(0.25) —02(0.24) —02 (0.34) —01 (0.26) —03 (0.24) —03 (0.36) —06 (0.23) —03 (0.24) —03 (0.36)
2,000
3 <15 —01(0.15) —01(0.12) 00 (0.14) —02(0.15) —01(0.12) 00 (0.14) —02(0.15) —01 (0.12) 00 (0.14)
>1.5 06 (0.35) —12(0.31) —18 (0.49) 450 (0.84) —03 (0.27) —02 (0.29) 13 (0.70) —03 (0.27) —02 (0.29)
7 <l.5 00 (0.08) —01 (0.08) 00 (0.11) —01(0.08) 00 (0.08) 00 (0.10) —01 (0.08) 00 (0.08) 00 (0.10)
>1.5 —02(0.16) —01(0.14) 00 (0.19) —02 (0.15) 00 (0.14) —01 (0.19) —02(0.15) 00 (0.14) —01 (0.19)
>7 <1.5 00 (0.06) 00 (0.07) 00 (0.10) —01(0.06) 00 (0.07) 00 (0.09) —01 (0.06) 00 (0.07) 00 (0.09)
>1.5 —01(0.11) 00(0.12) =01 (0.16) —01 (0.11) —01 (0.12) —00 (0.17) —01 (0.11) —01 (0.12) —01 (0.17)
Note. Comparison was performed in «, B logistic parameterization. The true values B = 0.74, 1.27, 2.27 are equivalent to N = 4, .6, .8. Conditions with

more than 10% bias are shown in boldface. FIML = full information maximum likelihood; ULS = unweighted least squares.

Also of interest was comparison of the behavior of FIML
with that of a CIFA estimator based on polychorics, as the
latter involves less computation. We performed CIFA-ULS
estimation using two different parameterizations, unstand-
ardized parameters and standardized parameters, to assess
their effect on IRT estimation.

What Are the Limits of the Good Performance of
FIML in Estimating IRT Models?

On the whole, the performance of FIML under the condi-
tions investigated was excellent. In only 36 of the 324 condi-
tions investigated was parameter or standard error bias larger
than 10% (our cutoff criterion for “good” performance).

FIML failed in conditions involving the combination of (a)
three latent traits, (b) a small number of indicators per dimen-
sion, (c) binary items, (d) low item slopes, and (e) high skew-
ness. As more of these factors were involved, the higher the
likelihood that FIML would fail to yield adequate parameter
estimates and/or standard errors. Thus, of the failed conditions,
77% involved three dimensions, 61% involved three indicators
per dimension, 86% involved binary items, 55% involved true
item slopes of B = 0.74 (or equivalently N = .4), and
75% involved items with skewness =1.5. For instance, FIML
failed in all conditions involving three latent traits, each with

three indicators, when sample size was 200 observations and
the items were dichotomous (i.e., regardless of item skewness
and item slope). It also failed under the above conditions when
sample size was 500 if the true item slopes were 3 = 0.74.

Of the 36 conditions for which FIML failed, 22 involved
models with three uncorrelated latent traits, each with 3 indi-
cators. This is an unrealistic setting in applications, as the latent
traits are generally correlated when so few indicators are used.
However, it is interesting that FIML failed to estimate the
three-dimensional model with 3 dichotomous indicators per
dimension, even when sample size was 2,000, when the items
had the highest skewness considered (2.67) and the smallest
slope (B = 0.74 or, equivalently, A = .4). Of the conditions for
which FIML failed that did not include 3 indicators per dimen-
sion, five involved three latent traits with 7 indicators each
when the items were dichotomous, sample size was 200, item
skewness was large (=1.5), and item slopes were not large
(B = 1.27 or, equivalently, A = .6). Two more conditions
involved three latent traits with a sample size of 500, 7 and 14
indicators per dimension, highest item skewness (2.67), and
lowest item slopes (3 = 0.74 or, equivalently, A = .4). Finally,
FIML also failed in seven of the nine conditions that involved
one latent trait, 9 dichotomous indicators, and 200 observa-
tions: those in which item skewness was =1.5.
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Figure 2. Proportion of times (coverage) that 95% confidence intervals for parameter estimates
included the population parameter. Coverage should be close to a nominal rate (95%). A nonpara-
metric procedure has been used to model the relationship between coverage and item skewness by
sample size. Except when sample size was 200 observations and item skewness was extreme (>2.5),
coverage was adequate for all methods. ULS = unweighted least squares; FIML = full maximum

likelihood.

What Are the Limits of the Good Performance of
CIFA-ULS? Effect of the Choice of Parameterization

Overall, the performance of ULS proved to be as good as
that of FIML. Both standardized and unstandardized CIFA—
ULS failed for 27 conditions for which FIML failed. Eleven of
these shared failed conditions involved the combination of
three factors, low factor loading (3 = 0.74), and a sample size
of 200 observations, whereas in the remaining 16 conditions at
least two of these settings were present. Unstandardized ULS
failed for 13 additional conditions (for a total of 40) for which
FIML succeeded. Eight of them involved three latent traits
with 3, 7, and 14 indicators per factor and low-to-medium

slopes (B = 0.74 and B = 1.27). The remaining 5 conditions
were unidimensional and involved a combination of high
skewness (>1.5), a sample size of 200 observations, and
models with 21 and 42 indicator per factor. Standardized ULS
failed for just 35 conditions, 1 less than FIML. In addition to its
failure in the conditions for which all three methods failed
(described above), ULS failed in estimating six conditions with
three latent traits and highly skewed dichotomous indicators
(skewness > 1.5) with 3 to 14 indicators per dimension. In this
setting the method fails even with 2,000 observations if the
item slope is low (B = 0.74). Standardized ULS failed for two
additional conditions with 5-point indicators that involved 3
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indicators per dimension in three-dimensional models and 200
or 500 observations. It is interesting that both standardized and
unstandardized ULS failed in estimating the hardest model (9
dichotomous indicators, three latent traits, lowest slope) for
sample size 2,000 not only when skewness was highest
(2.67)—as did FIML—but also when the item skewness was
the second largest (1.96).

Across the 324 conditions of the study, the average perfor-
mance of CIFA was somewhat better when standardized param-
eters were used for the estimation. However, this was due to
differential performance in just a handful of replicates within each
condition (always less than 1 in a 100, often 1 in 1,000). In the vast
majority of cases, minimizing with respect to standardized or
unstandardized yielded identical results. The effect of parameter-
ization on results at the aggregated level was marked in difficult
estimation settings (i.e., low sample size, few indicators per factor,
and highly skewed items). Otherwise, the effect of parameteriza-
tion on averaged results was almost negligible. The main effect on
aggregated results of using the unstandardized parameterization
for CIFA-ULS was to increase the variability of the parameter
estimates. Tables 6 and 7 provide the standard deviation of inter-
cept and slope parameter estimates by method, model size, num-
ber of observations, and indicators per factor, skewness level, and
true parameter value. As these tables show, the standard deviation
of the parameter estimates was reduced by half in certain instances
related with the aforementioned estimation conditions; sometimes,
the reduction was threefold when standardized parameters were
used. Partly as a result of this, the bias of unstandardized ULS was
larger than that of standardized ULS for conditions in which the
standardized parameterization yielded unacceptable results. Also
as a result of this, coverage for the slope parameters was, in
general, better when estimation was based on unstandardized
rather than standardized parameters.

However, in practice, applied researchers should expect the
same results regardless of which parameterization is used for
estimation. In cases of nonconvergence, or when an improper
solution is found when unstandardized parameters are used, the
results obtained here suggest that a proper solution might be
found minimizing with respect to standardized parameters.'’

Which Method to Use?

A striking result of our study is that ULS and FIML are not that
different with regard to the accuracy of the parameter estimates
and standard errors. Nevertheless, to provide insight on which
method is more accurate, we have computed the percentage of
conditions in which standardized ULS is more accurate than
FIML across four criteria (intercept relative bias, slope relative
bias, intercept standard error relative bias, and slope standard error
relative bias). These data are summarized in Table 8.

Clearly, standardized ULS outperforms FIML in parameter
accuracy (particularly in estimating the intercepts), whereas the
standard errors for the slope parameters are more accurate for
FIML. Similar categories of successful performance are ob-
tained when using RMSE, although it would be more compli-

Table 8
Summary Table Comparing FIML and
Standardized ULS Performance

Standardized ULS

Succeeds
Performance Performance
better than worse than
Criterion FIML FIML Fails
a
FIML succeeds 67.0% 19.4% 2.5%
FIML fails 1.9% 0.9% 8.3%
$
FIML succeeds 51.2% 35.2% 2.5%
FIML fails 1.6% 1.2% 8.3%
a SE
FIML succeeds 42.0% 44.4% 2.5%
FIML fails 2.8% 0.0% 8.3%
B SE
FIML succeeds 21.9% 64.5% 2.5%
FIML fails 2.5% 0.3% 8.3%

Note. Successful conditions are defined as those in which the relative
biases of a estimates, o standard errors, 3 estimates, and 3 standard errors
are smaller than 10% (in absolute value). Failed conditions are defined as
those in which at least one of these four criteria is not met. For conditions
where at least one method succeeds, the table provides the percentage of all
conditions where standardized ULS outperforms FIML in each of the four
criteria: o relative bias, B relative bias, a standard error relative bias, and
B standard error relative bias. Notice that the entries in each section sum to
100%. For the 324 conditions investigated, FIML failed but standardized
ULS succeeded in 2.8% of conditions. FIML = full information maximum
likelihood; ULS = unweighted least squares; SE = standard error.

cated to propose a cutoff performance. Nevertheless, when
using minimum RMSE criteria one would still favor standard-
ized ULS as the method of choice.

Because the observed differences between standardized and
unstandardized ULS are caused by differential performance on a
handful of replicates, the percentages for those conditions in
which unstandardized ULS is more accurate than FIML are given
in Table 9. The results shown in this table are very similar to those
shown in Table 8. Regardless of which parameterization is used
for the ULS estimator, estimates are more accurate for ULS, and
FIML is more accurate in its standard errors.

Which is the most advisable method then, FIML or
CIFA-ULS? In general, there is not much to choose from in
terms of parameter estimation accuracy and standard error
accuracy between CIFA-ULS and FIML. The latter clearly
exhibits better performance than the former only in models that
involve three indicators per dimension, that are estimated with

'7 Mplus can perform the minimization with respect to unstand-
ardized or standardized parameters. When unstandardized param-
eters are used, standardized parameters are available as an option.
When standardized parameters are used, unstandardized parame-
ters can be obtained with program statements.
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Table 9
Summary Table Comparing FIML and
Unstandardized ULS Performance

Unstandardized ULS

Succeeds
Performance Performance
better than worse than
Criterion FIML FIML Fails
a
FIML succeeds 71.6% 13.6% 3.7%
FIML fails 2.2 0.3% 8.6%
$
FIML succeeds 55.2% 29.9% 3.7%
FIML fails 1.5% 0.9% 8.6%
a SE
FIML succeeds 41.0% 44.1% 3.7%
FIML fails 2.5% 0.0% 8.6%
B SE
FIML succeeds 21.9% 63.3% 3.7%
FIML fails 2.2% 0.3% 8.6%

Note. Successful conditions are defined as those in which the relative
biases of a estimates, a standard errors, 3 estimates, and 3 standard errors
are smaller than 10% (in absolute value). Failed conditions are defined as
those in which at least one of these four criteria is not met. For conditions
where at least one method succeeds, the table provides the percentage of all
conditions where unstandardized ULS outperforms FIML in each of the
four criteria: « relative bias, {3 relative bias, a standard error relative bias,
and [ standard error relative bias. Notice that the entries in each section
sum to 100%. For the 324 conditions investigated, FIML failed but un-
standardized ULS succeeded in 2.5% of conditions. FIML = full infor-
mation maximum likelihood; ULS = unweighted least squares; SE =
standard error.

only 200 observations, and that exhibit low item skewness
(=1.5). Models that involve three indicators per dimension are
estimated with only 200 observations and have high item
skewness that is not well estimated by either method. In all
other conditions, the behavior of these estimators is similar,
with CIFA-ULS marginally outperforming FIML in terms of
parameter estimation and FIML marginally outperforming CI-
FA-ULS in terms of standard errors.

However, in terms of estimation speed, CIFA—ULS has a clear
advantage over FIML, particularly for multidimensional models.
On a 3-Ghz machine with 2 Gb of RAM memory, CIFA-ULS
took, averaging across conditions involving one latent trait, 7 s to
perform one replication, regardless of whether standardized or
unstandardized parameters were used. At most, it took 41 s. In
contrast, FIML took an average of 10 s and a maximum of 84 s.
However, for three-dimensional models, FIML took an average of
167 s and a maximum of 1,800 s (i.c., 30 min). In contrast,
computing time for CIFA-ULS is unaffected by the number of
dimensions involved. The computational difference is important
in applied settings where researchers typically fit a set of models,
especially if the number of variables is large and as the number of
latent dimensions increases. Future improvements in computer
power will make FIML more attractive computationally, but we

conjecture that the computational advantage of CIFA-ULS will
remain.

An additional benefit of CIFA is that more complex models can
be estimated with ease. Large models with correlated latent traits
or covariates can be readily estimated with the standard software
that implements CIFA. These more complex models can also be
estimated with FIML, but computational difficulties have pre-
vented the implementation of FIML for estimating general SEM
with mixed measurement models until recent times. On the other
hand, an obvious drawback of the sequential CIFA methods is that
only one IRT model, namely the normal ogive version of Same-
jima’s model, can be estimated.

Conclusions

Due to the computational burden involved in FIML esti-
mation of IRT models, previous research offered a fragmen-
tary view of the finite sample performance of this estimator.
In particular, the behavior of FIML estimates in multidi-
mensional models and the behavior of FIML standard errors
had scarcely been investigated. In this study we have ex-
amined the performance of FIML parameter estimates and
standard errors in 324 different conditions involving unidi-
mensional as well as multidimensional models. Also, the
performance of FIML has been pitted against that of CIFA—
ULS, an estimator that is asymptotically inferior to but
presents clear computational advantages over FIML.

One of the most relevant results for applied researchers
refers to convergence rates. In applications, a model is
useless if its estimation does not converge. All methods
showed similar convergence trends, and their probability of
converging is not high enough in dichotomous models with
few indicators and small samples. Nonetheless, conver-
gence was near 100% for all conditions in which sample
size was larger than 500 observations.

Another relevant result for applied researchers is the
existence of some conditions for which no method yields
adequate results. Whenever possible, these conditions are to
be avoided in applications. In particular, IRT estimation
fails in estimating models involving (a) a small number of
indicators per dimension, (b) binary items, (c) low item
slopes (around 3 = 0.74 or, equivalently, A = .4), (d) high
item skewness (=1.5), and (e) small sample size (around
200 observations). The more of these factors are involved,
the higher the likelihood that IRT estimation will fail to
yield adequate parameter estimates and/or standard errors.

Another relevant result in applied research is the perfor-
mance of FIML in relation to CIFA-ULS. FIML is the best
election in harsh conditions. As a result, (a) when both esti-
mators fail badly, CIFA—ULS fails more markedly than FIML,
and (b) FIML is the best election in small sample sizes (200
observations). In all remaining conditions, the performance of
these estimators is comparable, with CIFA-ULS yielding
slightly more accurate parameter estimates and FIML yielding
slightly more accurate standard errors. As a result, it can be
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argued that in nonharsh conditions (e.g., when sample size is at
least 500 observations), the least computationally expensive
estimator (CIFA-ULS) is preferable.

Also, although only of theoretical interest, the results of this
study clearly show that the asymptotic advantage of FIML
over CIFA (smaller variability of parameter estimates) is not
realized in finite samples. Indeed, the standard deviation of the
estimates does not differ appreciably when FIML or CIFA is
employed. Furthermore, when CIFA estimation is performed
with standardized parameters, the variability of parameter es-
timates is considerably smaller than is that for FIML.

A final result concerns the behavior of standard errors.
Parameter estimates and standard errors are biased in similar
conditions. However, the amount of bias in estimating standard
errors was much larger than that in estimating parameters for
both FMIL and CIFA. The amount of bias increased with
increasing skewness, but problems generally appeared only
when the number of indicators per dimension was very low.

As with any other simulation study, our study was limited by
the specification of the conditions employed. Thus, in multidimen-
sional IRT models, only models with uncorrelated traits were
considered. We conducted additional simulations to investigate
the performance of the methods when the latent traits were cor-
related. That is, we replicated some of the conditions involving
Type I and II items, seven indicators per dimension, and 500
observations. The effects of low and moderate (.2 and .6) corre-
lations between the dimensions were investigated. For CIFA—
ULS, the accuracies of slope parameters and standard errors were
unaffected by the magnitude of the correlations among the latent
traits. In contrast, FIML slope estimates and standard errors wors-
ened as the magnitude of the correlations decreased. Furthermore,
FIML computing time increased roughly by 125% when latent
traits were correlated, whereas CIFA-ULS computing time was
practically unchanged. The results obtained for CIFA-ULS are
consistent with previous results (e.g., Flora & Curran, 2004).

Also, larger models could have been considered, but the
present results clearly reveal that IRT estimation is more prob-
lematic as the number of indicators per dimension becomes
smaller. Nevertheless, minimum sample size for IRT estima-
tion in very large models (e.g., 100 variables) is an interesting
topic for future research. Future research should also investi-
gate the effects of performing FIML with standardized param-
eters instead of unstandardized parameters. The results ob-
tained in this study with CIFA suggest that, in some rare
applications, minimizing with respect to standardized param-
eters in FIML may lead to more accurate parameter estimates.
Another topic for future research is the behavior of FIML
when the model is misspecified. Again, prior studies (e.g.,
Flora & Curran, 2004; Maydeu-Olivares, 2006) suggest that
the performance of CIFA parameter estimates and standard
errors is somewhat robust to mild model misspecification, and
we expect similar results for FIML.

Another limitation, by design, of the present study is that in all
instances we conducted simulations using complete data to avoid

missingness issues. No conclusions as to the performance of these
methods in the presence of missing data can be drawn, and these
results might not generalize to cases in which missing data are
present. It is well established how to conduct FIML estimation in
the presence of data missing at random, but we are unaware of any
statistical theory for CIFA estimation when data are missing at
random. Thus, in the presence of missing data, researchers using
CIFA must resort to listwise or pairwise deletion of missing data,
which may lead to inconsistent parameter estimates.

Finally, goodness-of-fit testing has not been considered in this
study. Until recently, goodness-of-fit testing was not feasible due
to the sparse data conditions encountered in IRT applications.
Recent limited information statistics proposed by May-
deu-Olivares and Joe (2005, 2006) have effectively
solved this problem, and now goodness-of-fit testing can
reliably be performed for both FIML and CIFA (the same
sample sizes are needed for accurate model estimation).'®

The results of this study reveal that there is room for improving
IRT estimation accuracy. Future research should investigate if
new estimators are able to yield adequate results in the conditions
identified in this study for which both FIML and CIFA-ULS fail.
Two candidate estimators that should be pitted against FIML are
the bivariate composite likelihood (BCL; Maydeu-Olivares & Joe,
2006; Zhao & Joe, 2005)19 and Markov chain Monte Carlo
methods (see Wirth & Edwards, 2007). The BCL estimator is
slightly more computationally involved than CIFA but much less
involved than FIML. Monte Carlo methods are generally much
more involved computationally than FIML. The BCL estimator is
especially attractive because it has good computational features
and only slightly less asymptotical efficiency than does FIML.
Moreover, it is capable of easily handling complex SEM models,
with observed variables of mixed measurement types (i.e., con-
tinuous, categorical). Also, unlike CIFA, other IRT models, such
as Bock’s (1972), can be estimated with BCL.

'8 Goodness-of-fit statistics routinely printed by SEM programs
implementing CIFA do not assess how well the model fits the data.
Rather, they assess how well the model reproduces the sample
statistics used in the third estimation stage (thresholds and tetra-
choric/polychoric correlations). These goodness-of-fit measures
can be misleading when the assumption of discretized multivariate
normality of the data does not hold (Muthén, 1993). This assump-
tion can be assessed by using triplets of dichotomous variables
(Muthén & Hofacker, 1988) or pairs of polytomous variables.
However, it is not clear what to conclude if the assumption is
blatantly violated for some pairs of variables but not for others.
Recently, Maydeu-Olivares (2006) has provided a test of dis-
cretized multivariate normality, and a direct test of model fit has
been proposed by Maydeu-Olivares and Joe (2005, 2006).

19 Joreskog and Moustaki (2001) refer to this estimator as “un-
derlying bivariate normal” estimator, which is an appropriate term
within the context of the model they investigated. However, be-
cause the estimator is completely general, we feel the term biva-
riate composite likelihood is more appropriate.
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However, this outlook for future work should not distract
from the main findings of this study, namely, that FIML
yields adequate parameter estimates and standard errors for
IRT models with samples of size 500. With samples of this
size, CIFA provides an attractive alternative that researchers
may wish to consider, particularly if their application involves
a complex model. Adequate parameter estimates can be ob-
tained in some conditions with as few as 200 observations, in
which case FIML is likely to behave better than CIFA.
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Appendix

Technical Details

Unstandardized Versus Standardized Parameters

IRT models express the probability of each of the m" possible
response patterns as a function of p latent traits via the equation

Pr(yl = k17 N kn)

= f f P(y; = kin)e,(m)dn. (A.1)
e o i=1

Specific IRT models are obtained by choosing a specific ex-
pression for (a) the conditional probabilities, P(y; = k/v), and
(b) the density of the latent traits, ¢,(n). In this paper we have
assumed that ¢,(n) = &,(n: 0, W), (i.e., that m is normally
distributed with mean zero and correlation matrix W). Also, we
have considered two variants (logistic and normal ogive) of an
IRT model, Samejima’s GRM (see Equation 6).

The normal ogive GRM can alternatively be derived from
a factor analytic perspective. As in Equation (7), assume
that y* = Bm + €, where

(2)-Mlo)T a))

and € is a diagonal matrix. The latent response variables y*
are related to the observed categorical responses y via the
threshold relationship of Equation 8. From Equations 7, 8,
and A.3, it follows that

(A.2)

Pr(yl = kl’ ) yn = kn) = f RJ\d)n<y>< p"}'*’ E}*)dy*v
(A3)

where ¢,(¢) denotes an n-variate normal density with mean
i,- = 0 and covariance matrix %. = BWB’ + (), and R
is the n-dimensional rectangular region formed by the prod-
uct of intervals

(€15 ) if y=m-—1
Ri= (ai,la Q) if y, =1 (A4)
(o, o) if y,=0

Because y* is not observed, its variance is not identified,
which in turn implies that the variances of the random errors
€ are not identified. The easiest way to achieve identification
is to set the error variances equal to 1 (i.e., & = L In this
case, the ordinal factor analysis parameters and the normal
ogive version of the GRM—expressed as a special case of
Equation A.1—are equal. These equations are simply two
alternative ways of describing the same model, as a function
of a set of latent traits (Equation A.1) or a function of a set
of underlying response variables (Equation A.4). See
Takane and de Leeuw (1987) for further details.

Now, consider standardizing y* using

s (o5, ).

so that the standardized latent response variables have mean
B = 0 and correlation structure

Z* = A(y* - p"y*)s

(A.5)

P.=AY A=ABYB + QA (A.6)

These are polychoric correlations, as z* is a vector of cate-
gorized normal variables.

The probabilities (Equation A.4) are unchanged when
standardizing y”, in which case we write

9]

Jd)n(z*: 0,P..)dz*
R

Pr(yl =k17' . "ynzkn)zf
(A7)

where now R is a rectangular region formed by the product
of intervals

(Appendix continues)
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(Tim—1, %) it yy=m—1
ki = (Tits Tin) if yi=1 ’ (A-8)
(=2, if y;=0
To see this, let p; be an element of p,. and let o7 be a
diagonal element of % .. Then, at the threshold y; = oy, z;
Qi = Wi
takes the value 1,, = ———— = Ja; Where 9, is a
k ]O'T k

Vi
diagonal element of A. In matrix form,
7, = Aq,. (A9)

The correlation structure (Equation A.6) can be reparam-
eterized using

A = AB, (A.10)
0 = AQA =0"2Q 20O Q" (A.11)

Equations A.10 and A.11 imply that
P.=AVA' + 0. (A.12)

In summary, two parameterizations can be used for the
normal ogive version of Samejima’s model. One parame-
terization uses the parameters «, B, and (; the other
parameterization uses the parameters 7, A, and . The latter
arise from standardization of the former.

The diagonal elements of @ in the standardized parame-
terization are not free parameters, as it can be verified that
when € is a diagonal matrix,

0 = AQA =1 — Diag(AWA’). (A.13)
Also, from Equation A.11,
A*l :Ql/2®71/2’ (A14)

and the inverse relationship between both parameterizations
is

oy = A_ITk — ®_1/2Ql/27k’ B = A_]A — @—I/ZQI/ZA.
(A.15)

The scalar counterparts of Equations A.9 and A.10 is

Qik _ Bi

Ti,k = 7’? )\i - 717 >
Vo, + BB, o+ BB,

where w; is the ith diagonal element of ). Equation 9 gives
the special case of Equation A.16 when the model is iden-
tified using @ = I, except for a sign change for the
thresholds.? Also, using Equation A.13, the scalar counter-
part of Equation A.15 is

(A.16)

\/Ei X Tix \f]‘;i XN,

Ajr = y Bi = . (A17)
\/1 - )\i’tm,. \/1 - xl_’\mi

For  symmetric (not necessarily diagonal), Equation A.14
does not hold. And neither does Equation A.13, although it is true
that the diagonal elements of @ are still of the form

1 - "; WA,

Transformation From Normal Ogive Scale to Logistic
Scale

Unstandardized parameter estimates obtained using a lo-
gistic link function can be put in the metric of a normal
ogive link by multiplication by the scaling constant D =
1.702. Conversely, unstandardized parameter estimates ob-
tained using a normal link function can be put in a logistic
metric by division by the scaling constant D. In the formulas
above, unstandardized parameters are in a normal ogive
metric when £ = I. They are approximately on a logistic
matrix when Q = D’L In this study, when CIFA estima-
tion was performed by minimizing use of unstandardized
parameters, we used ) = D™. As a result, unstandardized
parameter estimates and standard errors were on a logistic
metric. When CIFA estimation was performed with respect
to standardized parameters, these were transformed to un-
standardized parameters on a logistic metric using Equation
A.17. Standard errors were obtained using the delta method
(see Agresti, 1990). Consult the supplementary materials to
this article for further details on implementation.

Correlation Structure Implied by Standardized and
Unstandardized Parameters

Consider a test consisting of n items that is assumed to
depend on a single dimension. Setting for identification the
variance of the latent trait to 1 and = I, the correlation
structure implied by the model is

1
BN
P.=1 " - 1 : (A.18)
)\n')\l e )\n)\n—l 1

29 As shown in this Appendix and as implemented in Mplus,
unstandardized and standardized thresholds are of the same sign.
However, in the literature unstandardized and standardized thresh-
olds are always depicted as being of opposite signs, and we have
used this convention in the body of the paper (see Equation 9). The
rationale for using different signs for both thresholds is presented,
for instance, in Takane and de Leeuw (1987).
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when standardized parameters are used (see Equation A.12) and when unstandardized parameters are used (see Equation

P.

A.6). We attribute the poorer performance of unstandard-

1 ized ULS to the complex nonlinear constraints (Equation
L 1 A.19) imposed by the unstandardized parameterization on
B2+ 1\Bi+1 the threshold and correlation structure.
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Call for Nominations

The Publications and Communications (P&C) Board of the American Psychological
Association has opened nominations for the editorships of Experimental and Clinical
Psychopharmacology, Journal of Abnormal Psychology, Journal of Comparative
Psychology, Journal of Counseling Psychology, Journal of Experimental Psychology:
Human Perception and Performance, Journal of Personality and Social Psychology:
Attitudes and Social Cognition, PsycCRITIQUES, and Rehabilitation Psychology for
the years 2012-2017. Nancy K. Mello, PhD, David Watson, PhD, Gordon M. Burghardt,
PhD, Brent S. Mallinckrodt, PhD, Glyn W. Humphreys, PhD, Charles M. Judd, PhD,
Danny Wedding, PhD, and Timothy R. Elliott, PhD, respectively, are the incumbent
editors.

Candidates should be members of APA and should be available to start receiving
manuscripts in early 2011 to prepare for issues published in 2012. Please note that the
P&C Board encourages participation by members of underrepresented groups in the
publication process and would particularly welcome such nominees. Self-nominations are
also encouraged.

Search chairs have been appointed as follows:

® Experimental and Clinical Psychopharmacology, William Howell, PhD

® Journal of Abnormal Psychology, Norman Abeles, PhD

® Journal of Comparative Psychology, John Disterhoft, PhD

® Journal of Counseling Psychology, Neil Schmitt, PhD

® Journal of Experimental Psychology: Human Perception and Perfor-
mance, Leah Light, PhD

® Journal of Personality and Social Psychology: Attitudes and Social
Cognition, Jennifer Crocker, PhD

® PsycCRITIQUES, Valerie Reyna, PhD

® Rehabilitation Psychology, Bob Frank, PhD

Candidates should be nominated by accessing APA’s EditorQuest site on the Web.
Using your Web browser, go to http://editorquest.apa.org. On the Home menu on the left,
find “Guests.” Next, click on the link “Submit a Nomination,” enter your nominee’s
information, and click “Submit.”

Prepared statements of one page or less in support of a nominee can also be submitted
by e-mail to Emnet Tesfaye, P&C Board Search Liaison, at emnet@apa.org.

Deadline for accepting nominations is January 10, 2010, when reviews will begin.




